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symmetric two-phase s.s.'s of first rank via their 
generalized first representations (Burla, Nunzi, 
Giacovazzo & Polidori, 1980); (b) The estimation of 
the non-centrosymmetric two-phase s.s.'s of first rank 
via their generalized first representations (Busetta, 
Giacovazzo, Spagna & Viterbo, 1980); (c) The 
estimation of the one-phase s.s.'s of first rank via their 
generalized second representations (Giacovazzo, 
1980b). 

The results obtained in (a) and (b) improve previous 
results (Giacovazzo, Spagna, Vickovid & Viterbo, 
1979). It may be expected that the application of the 
probabilistic theory in (c) will be successful too. The 
application of the generalized upper representations to 
two- and three-phase s.s.'s is a difficult but not 
prohibitive task. 

APPENDIX 
Symbols and abbreviations 

m = number of symmetry operators in the space 
group 

N = number of atoms in the unit cell 
Eh = normalized structure factor 
R h -- magnitude of the normalized structure factor 
Cp = (Rp, Tp) = pth symmetry operator 
Rp = pth rotation matrix of the point group 

Tp = translation vector associated 
rotation matrix of the point group 

I = identity 3 x 3 matrix 
s.i. -= structure invariant 
s.s. = structure seminvariant 

with the pth 
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Abstract 

The concept of generalized second representation 
[Giacovazzo (1980). Acta Cryst. A36, 704-711] has 
been used in order to estimate the one-phase structure 
seminvariants of first rank. 

1. Introduction* 

In a preceding paper (Giacovazzo, 1978; from now on 
paper I), the estimation of the one-phase s.s.'s of first 

* Symbols and abbreviations are defined in the Appendix. 
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rank was carried out by means of the joint probabiilty 
distribution method. The a priori information exploited 
in the calculations was chosen according to the theory 
of representations of the s.s.'s (Giacovazzo, 1977). In 
particular, any one-phase s.s. ~ was estimated via its 
second representation: that is to say, the knowledge of 
the diffraction magnitudes belonging to the second 
phasing shell of @ was exploited in order to give a 
probabilistic estimate of @. 

Burla, Nunzi, Polidori, Busetta & Giacovazzo (1980) 
showed that the estimates of the one-phase s.s.'s via 
their second representation are in general considerably 
more accurate than the corresponding estimates via the 
~ relationships (Hauptman & Karle, 1953; Cochran 
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& Woolfson, 1955; Weeks & Hauptman, 1970). This 
result is expected to be very useful in direct procedures 
for phase solution because it makes practicable both 
the passive (Overbeek & Schenk, 1976) and the active 
use of the one-phase s.s.'s. 

The concept of the generalized representation 
(Giacovazzo, 1980a, b) enables one to exploit an 
amount of information (i.e. the knowledge of the 
diffraction magnitudes contained in the generalized 
phasing shells) larger than that accessible to the mere 
representations (i.e. via the phasing shells). The first 
aim of this paper is to obtain, by means of the joint 
probability distribution method, formulae estimating 
one-phase s.s.'s in all space groups up to orthorhombic 
via their generalized second phasing shells. It is 
expected that these formulae will be more accurate than 
the previous ones. 

the exact values of the cumulants would be too slow; 
(b) our practical experience (Giacovazzo, Spagna, 
Vickovi6 & Viterbo, 1979) suggests that in the 
probabilistic formulae approximate values of the 
cumulants can be used without lowering their reliability 
too much. These approximate values can be obtained 
by neglecting the effects of the statistical weights of the 
reflections and their mutual correlation. 

3. The expected sign of E2h in Pi from its generalized 
second representation 

The second phasing shell of the one-phase s.s. q~ = ~Peh 
is 

{B}2={R2h, Rh, Rk, Rh+k, R2h+k}. 

2. The mathematical approach 

We assume that the reciprocal vectors are fixed and 
that the atomic coordinates are the primitive random 
variables. The mathematical device of the joint prob- 
ability distribution functions will be used. In accor- 
dance with preceding papers, the density function P ( E  I, 
. . . .  Er) will be calculated via the Gram-Charlier 
expansion (Klug, 1958) of the characteristic function" 

exp (S2/t) {1 + S3/t  3/2 + S4/t  2 + S~/2t  3 + S 3 S4/t  7/2 

+ S5/ t  5/2 + S3/t9/2 + . . .  }, 

where 

. ~ r s  . , . W 

S ,  = t Z r !s ! . . ,  w! (iul)r(iu2)S"" (iu")W 
r + s + . . . + W = u  

in centrosymmetric space groups, and 

1 2rs...w 
S = t ~ 2 ~/z r!s!.., w! (iul)~(iu2)S"" (iv")W 

r + s + . . . + w = v  

in non-centrosymmetric space groups, uj, j = 1, ..., r 
are carrying variables associated with the Ej's in the 
centrosymmetric space groups, and u i, v j, j = 1, 
.... r are carrying variables associated with the real and 
the imaginary parts of the E: 's in the non-centro- 
symmetric space groups. 

2~s...w are the standardized cumulants of the distri- 
bution. Their values depend, for chosen values r, s, ..., 
w, on the actual space group, on the statistical weights 
of the reflections and on their mutual correlation (see 
Appendices A and C of paper I). Though the algebraic 
expressions of the conclusive probabilistic formulae 
depend on the values of the standardized cumulants, 
their exact estimation will not be introduced into our 
calculations because: (a) an automatic procedure 
which estimates one-phase s.s.'s via the calculation of 

(1.32) gives the probability that the sign of E2h is plus 
when the magnitudes in {B} 2 are known. 

The generalized second phasing shell of q)2h 
(Giacovazzo, 1980b) is 

{B} 2 = {R2h , Rh, Rk, Rh+k, R2hek, R2k, R2h_+2k}. 

In order to keep the notation of this paragraph similar 
to that used in paper I and in the following paragraphs, 
where we deal with symmetries higher than in P1, we 
denote 

E1 = E2h; E2 = Eh; E 3 = Ek; E4,1 = Eh+k; 

E4.2 = Eh-k; E5.1 = Ezh+k; E5.2 = E2h-k; 

g 6 = g2k;  Es,1 = E2h+2k; E8,2 = E2h_2k. 

By means of the mathematical approach described in 
§ 2 we obtain 

te  'A k 
IEll 

P +  (E2h)  ~ 0" 5 × 0" 5 tanh ~ 2  2 + 1 + X'Bk; (1) 

k ) 

where 

A k = {(2R22- 1)E3(E4,1E5,1 + C4,2 E5, 2 + E4,1E4,2 ) 

- - 0 " 5  ~3(~4,1 "[- ~4,2) 

--  0"5(~4,1 C5,1 "b ~4,2 e5,2) 

. .+.[½(2Rs 2 -  1)(t:4, , e5,1Q,, + e4,2es,zt:8, 2) 

• -t- ~3 ~6 ~4,1 ~4,2 

+ ½es(e6 + 1)(e4,1 es,1 + e4,: %: )  

q" l e  3 e6(e4,1 -b e4.z ) l } /g  , 
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B k =  {¼e, H4(E 2) + e, e3(es, , + es. 2) + e 2 ~3(E4,1 + ~4,2) 

+ E2(e4,1 ~5,1 + E4,2 E5,2) + el e4,1 E4,2 

+ [el e6(e8,1 + es,2) + e3(es, 1 e8,1 + es, 2 e8,2) 

"+" e6(e4,1 e4,2 + e5,1 es,2)l}/2N, 

e i = R E - 1 ,  H4(E t ) = E  4 - 6 E ~ + 3 .  

We have enclosed in square brackets the terms which 
are not in (I.32). The prime to the summations warns 
the reader that precautions have to be taken in order to 
avoid duplications in the contributions when k sweeps 
over reciprocal space. 

In order to avoid overestimations, Y~, B k should be 
assumed to be zero if it is experimentally found 
negative. Some properties of (1) deserve to be stressed 
and compared with those enjoyed by (I.32) and by the 
corresponding ~1 relationship. Unlike the Y~ formula, 
(1.32) is able in principle to give information about the 
sign of E2h even when I Ehl = 1. On the other hand, less 
favourable situations are expected when I Ehl < 1. In 
(1) some contributions, a priori not negligible, do not 
depend on the value of IEhl. This situation suggests 
that the sign of any E2h reflection can in principle be 
evaluated by (1). This is due to the fact that whereas 
the mere second representation exploits only quintets of 
which E h is a basis reflection, the generalized second 
representation exploits also quintets of which E h is a 
cross reflection. 

When q~ is estimated via its generalized second 
representation, besides (3) the special quintets 
(Giacovazzo, 1980b) 

{ ~'/~' }2 = {~0H-- (Ph+kRj + ~0(h+kRfiRn "4- ~0kR/-- ~0kRjRn, 

j = 1, . . . ,  m/2  } (5) 

are also exploited. Then the generalized second phasing 
shell is 

{B}g = {Rn, Rh, Rk, Rh+kR? R H+kRj, Rk(I-R.), 

Rh+kRj(I+R.), RH+kRj(I_R.), j = l , . . . ,  m}. (6) 

Since h under certain conditions and k are free vectors 
in (3) and (6), the joint probability distribution 

P(E.,. {Eh}, {Ek}, {Eh+kR), {EH+kR), {Ek(I_R,)}, 
{Eh+kRj(I+R,,)} , {EH+kRj(I_R,)} , j :  1,...,  m) (7) 

has to be studied. In (7), {E h} is the set of structure 
factors whose indices bleong to {h}, {E k} is any chosen 
set in the asymmetric region of reciprocal space and 
{ Eh ÷ kRj}, " ' ,  { En + kRj(,- R )} are sets obtainable from the 
specified condition on h and k. 

In order to describe in a simple way our results 
whatever the space group may be we generalize the 
notation introduced in paper I in the following way: 

4. The expected sign o f E  H = Ehtl_R. ) in any centro- 
symmetric space group up to orthorhombic from its 

generalized second representation 

Let q~ = ~H = (Ph(I-R~ be our one-phase s.s. of first rank. 
For a fixed H, h is a free vector (h E {hi) under the 
condition 

h ( I -  R , ) =  H. (2) 

More matrices R, can satisfy (2) and consequently 
more sets { h} can exist. 

When q~ is estimated via its second representation 
the set of special quintets 

{ ~/}2 ~--- qTH- ~h + qThR,- qTkRj -t- ~/TkR fl j = 1 , . . . ,  m/2 
(3) 

is exploited, from which 

{B}2=  {RH, Rh, Rk, Rh+kRflRH+kR? J= 1 , . . . ,m} .  
(4) 

Since h under certain conditions and k are free vectors 
in (3), the joint probability distribution 

P(E  n, {Eh} , {Ek} , {.Eh+kR), {EH,+kR,} , ~ =  1, ..., m) 

was studied in paper I from which the conclusive 
formula (1.36) arises. 

E 1 = EH; E2 = Eh, E 3 = Ek; E4.j = Eh+kRj; 

ELy = EH+kR ? E6 = Ek(Z_R,,), E7,j = Eh+kRj(I+R,,), 

Es, j : EH+kRj(I_R, ). 

We obtain 

P+ (Era) ~-- 0.5 

l l E ' l  ( 
+ 0 " 5 t a n h [ - 2 - ~ N  ~ k e 2 -~- 

~-~" Ah'k \ ~} 
n_.,h,k .]  (__1)2h T , 

1 + n,~kBh, k/ 
(8) 

where 

• R~=--RtR,, Rt= R.tR, , 

- ½~ Y ~4,j-  ½ Y ~,,, ~ , j  
j Rj=R, 

Rj=--RtR. 

Rj Rj=RtR, 
\ R.r=-RIR,, RI= R jR n 

~4, i ~4,j ~7,i) 
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+ E3 tE4,1 ~4, R n E6 + ~4,-I E4,-R. E6 

+ ½E6 Zi E4't ~8, i + ½E6 Zl E4'i + ½ Zi E4'i E8'i ) 

( 
Bh, k =  {-- k Z O4(Ej) + E1 ~3 Z ~'5,j + El Z 

[ J J Rj=R~R n 
Rt=R/Rn 

E4,i E4,j 

"+" E2 E3 Z ~4,j "k- E 2 Z ~4.i E5.j "+" ½El O4(E2)  
J Rj=R, 

Rj=-RIR . 

El E6 Z E8,j + E3 Z (E4,j ET,j + E5,j E8,j) 
Y J 

Z /~4, i ES, j E7, i + E6(~4,1 /~4, R. 
Rj=R, 
Rj=--R~R. 

with Rj = Ri; furthermore, E7, j :-- E h whatever j .  (c) In 
Pi ,  (8) coincides with (1). 

5. Expected value of  ~0 H -- (Ph(I-R.) in the non-centro- 
symmetric space groups up to orthorhombic via its 

generalized second representation 

In the space groups up to orthorhombic, all the 
one-phase s.s.'s of first rank have restricted phase 
values' (i.e. 0 or n). Therefore, one has only to estimate 
their signs. In accordance with paper I we introduce the 
fictitious (not belonging to the space group) symmetry 
operators Cm+ j = (--Rj, - Tj), j = 1, ..., m. Then the 
generalized second phasing shell of q~n is again given by 
(6) provided m' = 2m replaces m. That enables us to 
use the same notation as in § 4. Our result is that (8) 
holds for non-centrosymmetric groups too. 

In non-centrosymmetric space groups with sym- 
metry higher than orthorhombic the one-phase s.s.'s are 
in general non-centrosymmetric. It may be expected 
that 

cos ~PH -~ la ( 2 6 ) / l o ( 2 6 )  (9) 

approximately estimates cos ~Pn, where G is the 
argument of the hyperbolic tangent in (8). 

+ E4,_ I E4,_R, ' + ES, I E5,R, ' --t- ES,-I E5,-R,, 

"t- IE 1 Z O4(E7,j) + ~E6 H4(E3)  
J 

We have enclosed in square brackets the terms which 
are not in (I.36). The summation over the index n in (8) 
takes into account the fact that more matrices R n can 
satisfy (2). It may be noted that in some terms in Ah, k 
and Bh, k we have replaced the index j by specific 
rotation matrices. As in (I.36) precautions have to be 
taken in (8) to avoid duplication of the contributions to 
~n,h, kAh, k a n d  ~-~m,h,kBh, k when n, h and k vary over 
their allowed values. 

The derivation of (8) requires the application of 
space-group algebra to the joint probability dis- 
tribution method. The reader will find a short descrip- 
tion of the procedure in the appendices of paper I. 

Equation (8) has been specifically derived for space 
groups with symmetry up to orthorhombic but it is 
expected to hold approximately for space groups with 
higher symmetry. 

The following may be noted. (a) If R n corresponds to 
a symmetry operator of order two then the condition 
R i = R jR  n coincides with Rj = R i R  n. Furthermore, 
RT, j E {R h}" In fact, h' = h + kRj(l  + Rn) satisfies (2). 
(b) When R n = --I the condition Rj = --R/R n coincides 

6. Conclusions 

We have obtained some probabilistic expressions [i.e. 
equations (8) and (9)] which estimate one-phase s.s.'s 
of first rank via their generalized second rep- 
resentations. If these expressions are compared with 
those obtained via the mere second representations [i.e. 
equations (I.36) and (I.40)], some new terms can be 
recognized. The contribution of these new terms seems 
not negligible and can remarkably improve (in the 
probabilistic sense) the accuracy of the estimates. 

m = 

N = 

E h = 
Rh: 
Co : 
R . :  
L =  

I = 
S.S. = 

t = 

A P P E N D I X  
Symbols and abbreviations 

number of symmetry operators in the space 
group 
number of atoms in the unit cell 
normalized structure factor 
magnitude of the normalized structure factor 
(Rp, Tp) = pth symmetry operator 
pth rotation matrix of the point group 
translation vector associated with the pth 
rotation matrix of the point group 
identity 3 x 3 matrix 
structure seminvariant 
number of atoms in the asymmetric unit 
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Abstract 

The detailed conformations of benzene clusters con- 
taining 2, 3, 5, 7, 9, 11, 13 and 15 molecules were 
calculated. The nonbonded potential energy of the 
clusters was minimized by the Newton-Raphson 
method with exp-6-1 potential functions. All of the 
clusters exhibited a predominating edge-to-side or 
herringbone pattern of packing. The concept of 
intershell coordination, as contrasted to !igand coor- 
dination, was introduced and illustrated with the 
undecamer and larger clusters. The pentadecamer 
clearly showed the beginning of a second coordination 
shell. The tridecamer conformation was related to a 
13-molecule fragment from crystalline orthorhombic 
benzene. This crystal fragment has a higher energy 
than the tridecamer. The fragment can convert to the 
tridecamer conformation by a process of plane slippage 
with cooperative molecular motion. Two examples, an 
isoheptamer and an isotridecamer conformation, are 
given of clusters with lower total cluster energy but 
with a higher energy for the reference molecule. In 
neither case do the conformations follow a smooth 
trend with increasing cluster size. The isotridecamer 
has approximate threefold symmetry and has a 
conformation quite different from the crystal fragment. 

Introduction 

Molecular complexation or association and subsequent 
crystallization are caused by the action of weak 
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nonbonded forces between molecules. For hydro- 
carbons considerable progress has been made in the 
elucidation of the quantitative nature of these forces in 
the crystal. The procedure used is to assume a 
reasonably simple and theoretically justifiable model 
for the nonbonded potential energy. The coefficients of 
the nonbonded energy functions are then adjusted to 
give the best fit to several crystal structures (Williams, 
1966; Kitaigorodsky, 1973). 

The model for the nonbonded potential energy used 
here is referred to as exp-6-1: 

Vjk = B exp (--Crjk) -- Ar~  6 + qj qk r~ 1" 

Vjk is a nonbonded pair potential between atomsj and k 
in different molecules separated by distance r. The first 
term is the short-range repulsion energy caused by 
overlap of filled electron shells. The values of C are 
usually estimated from theory. Values of B for C. • • C, 
C . . .  H and H . . .  H interactions are found by fitting 
observed crystal structures. The second term is the 
dispersion attraction energy and values for the co- 
efficients A may also be fitted from observed crystal 
structures. For hydrocarbons, the values of the net 
atomic charges, q, are small but not negligible. In this 
study we use the nonbonded parameters of Williams & 
Starr (1977), set II. These nonbonded parameters are 
given in Table 1; the geometric mean combining law 
was used for C . - . H  interactions. These parameters 
give a good fit to the crystal structures of a set of nine 
aromatic plus nine saturated hydrocarbon crystal 
structures. It seems reasonable to assume that these 
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